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Chapter 1

Introduction

The last decade has seen the rise of the desktop multi-core processor, to the point where it is the default technology
for everything from workstations and servers to laptops. The driver behind this is simple; clock-speeds have reached
a zenith that curtails the rapid single core performance gains we saw in the 1990’s and early 2000’s. Instead, the
expansion in transistor count predict by Moore’s Law has been exploited by chip designers by duplicating the
numbers of cores, thus still increasing overall performance without causing heat or power issues.

Whilst desktop processors have kept to a relatively small number of cores on a single chip, others have seen the
opportunity to develop further, by including hundreds or even thousands of cores. The forerunners in this approach
have been graphics processors (GPUs), where highly parallel workloads are the norm. There is a trade-off to be
made; the more cores you have, the slower and less advanced they can be. A trade-off also has to be made with
power consumption and heat dissipation; GPUs have chosen lower clock-speeds which permits more transistors
and therefore more cores. The result is a much higher floating point performance - up to and beyond an order of
magnitude higher for single precision parallel workloads.

This form of wide parallel processor, often described as a massively parallel architecture, is not only beneficial for
typical graphics applications; recent interest has arrived from the across scientific computing community. However,
despite the low-cost, scalable nature of the hardware, the difficulty of programming such architectures can be a
real roadblock to their widespread use. Many-core architectures are relatively new, and as such the techniques
for programming them are still in their infancy. If multi-core desktop chips are notoriously difficult to program
for, many-core architectures with hundreds or thousands of cores are worse. They require completely different
techniques and tools, even a different mindset.

Considering the complexities involved, it is extremely difficult to expect domain experts to overcome the challenges
involved in GPU computing; you require experts in both the domain and the architecture to proceed.

My thesis is therefore to develop declarative Domain Specific Languages (“DSLs”) to enable experts in scientific
and high-performance computing to make use of massively parallel architectures, without being distracted by
the intricate details of the architecture. My focus will be developing languages for optimisations problems, such
as those seen in dynamic programming problems, a simple and widely used technique. It is highly relevant in
Bioinformatics, an area of scientific computing that also has demanding performance requirements. My proposal
is therefore to use my research so far to develop a language for describing simple recursive functions implemented
in a parallel compiler targeting GPUs. This will then act as a bootstrap language for specialist declarative DSLs,
such as Hidden Markov Models.

Chapters 2 and 3 describe the background in Massively Parallel Processors and Dynamic Programming respec-
tively. Chapter 4 explores some of the techniques used in Bioinformatics, illustrating the links to both dynamic
programming and the potential for targeting massively parallel hardware. Chapter 5 details the development of
HMMingbird, a language and compiler for Hidden Markov Models targeting GPUs that has been the focus of my
first year. Finally, my full thesis proposal can be found in Chapter 6.
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Chapter 2

Heterogeneous Massively Parallel
Processors

Massively parallel processors (MPPs) are a rapidly expanding area of research, utilising a vast numbers of cores
on a single chip for both specific and general purpose applications. Growth in this area has been driven by the
development of massively parallel graphics cards, resulting in commodity hardware that is widely available, scalable
and cost-effective. The adoption of general-purpose hardware for graphics applications has opened the door for
non-graphics applications to use the potential of the graphics card.

During the last five years graphics card manufacturers, such as NVIDIA and ATI, have become increasingly aware
of the potential market for such applications, leading to the introduction of general purpose frameworks such as
CUDA and OpenCL. The target audience has grown from high performance applications in the life sciences and
financial sectors to applications across research and beyond. Desktop software in diverse areas such as image-
editing with Photoshop, video encoding and decoding and web browsing have benefited from the use of a massively
parallel co-processor. Nowhere is this approach more pronounced than in the range of netbooks and nettops using
NVIDIA’s ION board - supplementing a low power Atom processor with a low power GPU to offload certain
data-heavy tasks.

In principal, any application can be ported to the massively parallel architecture. In practice, we must find
applications, or sections of applications, that are suited to parallelisation across a relatively large number of cores.
A degree of independence or a repetition of work is a key criteria, and may vary by the target hardware. We must
caution, therefore, that this approach is no silver bullet - the massively parallel architecture must instead act as a
true co-processor, working in tandem with the CPU to compute suitable workloads.

This chapter will focus on the development of algorithms and algorithmic techniques for the massively parallel co-
processor, including the exploration of the features and functions of the hardware as well as a software techniques
for maximising performance. Many of the techniques we will discuss come from earlier work in massively parallel
clusters or supercomputers, where many desktop or server cores are used in tandem. The techniques may be very
different from desktop multi-core processing; device wide synchronisation is difficult and undesirable in massively
parallel settings so traditional concurrency features such as monitors, semaphores etc. have little use.

2.1 Background

2.1.1 The genesis of the massively parallel co-processor

The development of a drop-in card for graphics began in the early 1980’s with the advent of IBM PC video cards,
however it wasn’t until the 1990’s that true graphics co-processors become common-place. These early graphics
co-processors were simple affairs with fixed functions designed for implementing common 2D graphics operations.
The development in the mid 1990’s of combined 2D/3D cards lead to hardware with fixed pipelines, in which a
series of pre-determined computational steps are applied to a set of vertices[47].

The potential of this new hardware became rapidly apparent - not only did a specialised co-processor for graphics
processing alleviate work from the CPU, it allowed a customised architecture based around computing these fixed
pipelines. In particular, it allowed the designers to take advantage of the concurrency inherent in these pipelines
- much of the data could be computed independently. Additionally, the hardware could be designed to make
operations typically performed extremely fast at the expense of operations for general purpose computing. These
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factors combined to provide hardware with high peak performance - typically four to five times higher theoretical
Floating Point Operations Per Second (FLOP/s).

As game and graphics developers required more control over the exact function performed on the GPU, manu-
facturers moved towards a more flexible hardware. The development of programmable shaders in the early 2000’s
for the first time allowed developers to access the graphics hardware in a meaningful way. Each shader repre-
sented something akin to a general purpose processor, that was to be used in combination with the fixed function
hardware. Originally programmed in assembly languages, high-level languages have appeared including Microsoft’s
HLSL, NVIDIA’s Cg[46] and OpenGL’s GLSL. This was quickly taken advantage of for applications as diverse as
linear algebra[37], physical simulation[29] and ray tracing[52]; indeed the intention of the designers was to create
hardware-oriented, general-purpose languages.

The BrookGPU[9] project was one of the first to take advantage of these low-level hardware compilers for a
general-purpose computing framework; their formulation is the starting point for nearly all General Purpose GPU
(GPGPU) computing today. They adopted the Brook Stream Programming Model previously developed for stream-
ing supercomputers and adapted it for a massively parallel GPU. The model consists of data described as streams,
essentially multi-dimensional arrays, which are manipulated by kernels, special functions that act on streams of
data by applying the body of the function to each element in the stream. BrookGPU provides a limited memory
model - kernels are required to specify which streams are input and which are output to prevent side-effects, data
can be gathered from different locations only if described as a gather stream, but cannot be written scattered i.e
they must write in a regular pattern.

2.1.2 Mainstream general purpose computing

Since the release of BrookGPU, general purpose computing on graphics hardware has become a major selling
point for both of the large graphics hardware manufacturers. NVIDIA have become market leaders with the
Compute Unified Device Architecture (CUDA) compute framework, whilst ATI have developed the Stream SDK
in conjunction with OpenCL. These technologies adapt the Brook approach described above, adopting the kernel
system whilst dropping much if the focus on streams. Kernels can be specified to run over a certain grid of values,
which are then used to access data as required, supporting full scatter/gather on the GPU. Hardware changes as
well as software support have been a vital part of this effort.

Intel had been developing the Larrabee micro-architecture as a competitor to ATI and NVIDIA in the GPU sphere,
by removing all fixed function devices in the GPU and implementing all functions in software using a large number
of x86 cores. Recently this ambitious aim was shelved in favour of the development of a massively parallel co-
processor for high performance computing, with the hardware re-badged as the “Knights” series, showing that
massively parallel processing is beginning to become a market in its own right.

This notion is clearly supported by the continued development of cross-platform applications and frameworks.
OpenCL builds on the system of parallelism described by BrookGPU, CUDA and the StreamSDK to provide a
consistent API across both graphics hardware and traditional CPUs. Microsoft have developed DirectCompute, a
cross-manufacturer framework included with DirectX, with similar execution patterns to CUDA and OpenCL.

2.1.3 High-Level Frameworks

The perceived complexities with this computational model have also led many to consider “higher-level” frameworks.
Microsoft have developed the Accelerator [62] framework, which aims to make general-purpose use of parallel,
massively parallel machines and FPGAs accessible to the average programmer. Available on wide variety of
languages and platforms, including .NET, it is implemented through parallel array functions, that perform data
parallel functions across all items within an array. Another array focused language is SAC, a high-level language
with multiple targets, including GPGPUs[27]. Similar work has been undertaken for GPU data-parallelisation using
array computations in Haskell by defining DSLs[44, 13, 61]. Copperhead[11] is a similar embedded data-parallel
language which uses a subset of Python including many data parallel primitives, permitting compact descriptions
of GPU algorithms.

These examples illustrate two trends; firstly, the growth of high-level frameworks targeting multiple types of parallel
and custom hardware (GPGPUs, multi-core, FPGAs, etc.) and secondly the focus on array computations as the
basis for implementing parallel algorithms. The latter should not come as a surprise; array-style processing through
frameworks such as map-reduce have become common place in computing across clusters.

A recent interesting development of the first trend has been language virtualisation[12], where a parallel runtime
is accessed via a series of user-created domain specific languages for different application areas. This approach has
the benefit of providing easy access to parallel hardware for the domain-focused expert.
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2.1.4 Application growth

At the front of queue for these new technologies were the life sciences and the modelling communities, with
diverse target applications including financial modelling, bioinformatics, computational chemistry and medical
imaging, amongst others. For these areas, the low cost of development, wide availability and excellent scalability
all contributed to movement away from traditional data parallel high performance computing techniques.

Applications in life sciences are typically driven by a large data-sets - in particular, bioinformatics deals with
enormous, and growing, datasets of DNA and protein sequences, that require complex analysis. Development in
other application areas requires large amount of processing on smaller datasets.

Massively Parallel processors are not only making a splash at the top-end, with scientific computing. The NVIDIA
ION platform is designed to support low-end laptop hardware - typically netbooks or nettops with Atom processors
- by including a low-end GPU to speed up specific applications. This can include 1080p decoding, image editing
and web browsing, improving the performance of application that would otherwise be sluggish or impossible on
low-end hardware.

2.2 Parallel thinking: A worked example

As a first approximation, we will consider a simplified, abstract version of the massively parallel architecture: a
large collection of relatively slow cores grouped into a series of multiprocessors, with discrete memory. This simple
description will allow us to develop the ideas surrounding development on such hardware, before we expand to
detail the intricacies of the particular implementations.

We will use a common example in massively parallel programming[36, 51], matrix-matrix multiplication. This is
an excellent example of an application that is suited to porting to a massively parallel processor. In practice,
library support exists for performing linear algebra computations on the device - CUBLAS, MAGMA and FLAME
amongst others.

In matrix multiplication we take a pair of matrices F and G and perform a series of dot products to compute a
new matrix P. Each cell in the matrix is compute by loading the equivalent row from F and the equivalent column
from G and computing the dot product. Each cell is computed independently from any other - the result of any
other cell will not change the result of this cell. This independence will allow the computation of any combination
of the cells of P in parallel. Figure 2.1 illustrates the point.

Our observation that each cell may be run in parallel with any other is key to placing the algorithm efficiently on
the device. In general, algorithms that display limited dependencies will be easier to parallelise than those that
have an intricate set of dependencies.

2.2.1 Device Basics

The device we are considering for the rest of this chapter is a massively parallel co-processor, most commonly in
the form of a GPU connected via a PCIe slot. Execution on the co-processor or “device” from the host follows
these steps:

1. Initialise the co-processor.

2. Allocation of memory on the device.

3. Copying of source data to the discrete memory of the device from main memory

4. Transfer and execution of a kernel, which describes the code to run on the device.

5. Copying of destination data from device to the host memory.

6. De-allocation of memory.

The kernel describes the code to be executed on each multiprocessor on the device. Each multiprocessor is in-
dependent - there are no synchronisation functions between multiprocessors on a device. The cores within a
multiprocessor are co-operative in that only a single instruction may be evaluated at each step - so called SIMT
(Single-Instruction, Multiple Thread).

Threads are grouped by blocks, with each block assigned to an arbitrary multiprocessor on the device, according
the decision of the on-device scheduler.
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Figure 2.1: Matrix multiplication - computing a cell in P requires the dot product of a row in F and a column in
G.

2.2.2 Thread Granularity

The first step to parallelisation is to determine the granularity of the thread - what level of the algorithm should
we divide in to threads? Threads in the massively parallel model tend to be light-weight, so the trade-offs will be
different to typical multi-core programming. The granularity should take into account factors such as the number
of computations, the intensity of those computations - the ratio between I/O and instructions - and the typical
scale of the problem.

The easy way out is to appeal to data parallelism - apply the serial algorithm to large amounts of data, assigning a
thread for each sequence. However, this approach leaves limited scope for the finer grained optimisations described
later on, and may also be impractical for many applications. For our worked example we are going to assume we
cannot appeal to this sort of parallelisation.

Based on our observation that each cell is independent, we are instead going to assign a single thread to each cell.
A finer granularity - say, computing the dot product in parallel - would require some form of inefficient reduction
on the device. A broader granularity - say a collection of cells - may not produce enough threads to fully saturate
the device.

We will group threads into blocks according to their two-dimensional spatial locality - selecting what is often
described as a tile in the output table. This is a very common pattern in massively parallel applications. In theory
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we could group threads by rows or columns instead, however grouping by tiles will allow us to make better use of
the memory hierarchy on the device when we deal with optimisations.

2.2.3 Kernel Implementation

Now we have decided on the granularity of the threads, the implementation of the kernel is fairly straight-forward.
The kernel is written from the perspective of a single thread. In this case, each thread should compute the dot-
product for a single cell in the table. These will be grouped into thread blocks by tiling the output table; each
thread will then compute the dot-product in tandem with other threads representing near by cells.

Figure 2.2 gives the description of such a kernel in the CUDA framework, although it only differs in syntax to the
equivalent implementation using OpenCL. One important feature exploited in this description is the ability to lay
threads in a 2D or 3D grid within a thread block. By defining the width/height of a block when calling the kernel,
each thread will be given a unique co-ordinate, accessed through the threadIdx variable. This notation simplifies
the description of many algorithms that deal with a grid of values. Also note the use of local variables, stored in
registers, to compute temporary values.

__global__ void matrixMultiplication(float * m, float* n, float* p, int width) {
float output = 0;

int x = threadIdx.x;
int y = threadIdx.y;

for (int i = 0; i < width; i++) {
float mval = m[y * width + k];
float nval = m[k * width + x];
output = mval + nval;

}

p[y * width + x] = output;
}

// Kernel can be called using the following code
dim3 threads(width,height);
matrixMultiplication<<<blocks,nthreads>>>(..<parameters here>..);

Figure 2.2: Example kernel for matrix multiplication.

2.3 Architecture

Massively parallel architectures are constructed from a collection of multiprocessors, often called streaming multi-
processors (SMPs), which bear many of the hallmarks of vector processors. Each multiprocessor is, in one sense,
much like a CPU chip, with a number of cores that can work in tandem. However, it differs both in the number
of cores - typically 8 or more - and in the method of co-operation. Where a CPU chip will schedule so-called
“heavy-weight” threads to each core, with each thread executing in a completely independent way, a streaming
multiprocessor will execute all threads synchronously. Such a system is a natural extension to the SIMD (Single
Instruction, Multiple Data) paradigm, and so is often described as a SIMT (Single Instruction, Multiple Thread)
or SPMD (Single Program, Multiple Data) architecture.

2.3.1 Kernel

The device code is defined by a kernel. This kernel provides an imperative program description for the device code.
This code is executed on each active thread in step. The code for each thread differs only in the parameters passed
to it - such as a unique thread id. These allow loading of different data, through indirect addressing, despite each
thread executing the same instructions.

Whilst it is true to say that all active threads on SMP must co-operate, it does not mean they must all follow
the same execution path. Where active threads take a different execution path, they are said to have diverged. A
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common strategy for fixing such divergence is to divide the active threads when we reach such a branching point,
and execute one group followed by the other, until both groups have converged. However, this may result in an
under-used SMP, where some cores remain fallow for much of the time.

The actual hardware implementations introduce more complexity. An SMP may have more threads allocated to it
than it has cores. As such, it may need to schedule threads to cores as and when they are required. As a result,
they are designed with “light-weight” threads, which provide minimum overhead, including low cost of context
switching between threads. This is achieved by storing the data for all threads assigned to a SMP at once - each
core provides a program counter and a minimal amount of state, including the id of thread. To switch threads, we
simply replace the program counter and the state data. Register contents remain in place for the lifetime of the
thread on the device.

2.3.2 Comparison to CPUs

It is illuminating to compare the massively parallel architecture described so far to a typical multi-core chip. The
most obvious differences lie in the layout of the chips - a desktop typically has 2 to 8 cores on a single chip,
whereas a GPU will contain many more, organised by vector multiprocessors. Another difference, driven by the
need for high data throughput, is the memory bandwidth available - main memory to the CPU is typically around
10-30GB/s; GPUs can support anywhere up to 180GB/s.

An interesting comparison can be made between the cores. GPU cores are optimised for single-precision floating
point computations; typical floating point operations may require fewer clock cycles than on an equivalent CPU.
Additionally, the SMP is configured to support low-cost memory accesses by providing vast numbers of registers.
One key difference between the two is the way in which they configure and use the cache. Most GPUs provide
user configurable shared memory, which has similar latency to a cache but is managed by the user. The latest
NVIDIA GPUs allow this to be split between user-configurable and a true cache. In either case, these tend to be
much smaller than their CPU counterparts - L3 caches on desktop chips can reach 12MB. This reflects the typical
data-usage scenarios required by each processor.

2.3.3 CUDA

Shared Memory

Registers Registers

Processor 1 Processor 2

Instruction
Unit ...

Registers

Processor n

Constant and Texture Caches

Device Memory

Multiprocessor 1

Multiprocessor 2

...
Multiprocessor n

Figure 2.3: The general purpose architecture of a typical CUDA based GPU.

CUDA[51] is one such concrete implementation of GPGPU framework on top of massively parallel hardware. It has
been developed and designed by NVIDIA in conjunction with the graphics card hardware resulting in a coherent
and usable framework. We will describe the details of CUDA as an example of how a modern massively parallel
framework is developed.

Blocks, threads and warps

CUDA describes a collective group of threads as a block. Threads in a block may work co-operatively, and are
scheduled to the GPU in smaller groups known as warps. Warps may be consider to be a constant width that
abstracts from the true execution width of the device; the block may be considered as a high-level grouping of
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threads that may co-operate. In practice, all threads from the same block are placed on the same multiprocessor,
thus ensuring that co-operation is relatively straightforward.

Whilst warps are how threads are scheduled to the device, the execution of each warp depends on the device itself.
A CUDA SMP has between 8 and 48 cores, depending on the exact card; a warp is 32 threads. When a warp is
executed, we divide the 32 thread warp into half or quarter warps. Each smaller group is then executed in parallel
on the device - one thread per core - until the whole warp has been processed; this will happen sequentially. Cards
with 32 cores typically run two half warps simultaneously; the half-warps may be from two different full warps.
Cards with 48 cores use 16 as a super-scalar extension; any half-warp whose next instruction may be executed in
parallel with the current instruction can use the super-scalar cores.

Such a system ensures that all threads within a warp remain in step. However, since each warp may execute at
its own pace (or that of the scheduler), threads within the same block, but in different warps, may be executing
different pieces of code altogether. NVIDIA provide a __syncthreads() function to ensure all warps in a block
reach a given place in the kernel before continuing.

Memory features

A SMP provides a large number of registers to all cores - registers are not linked to a given core. The SMP also
provides an on-die area of fast memory, known as shared memory. This shared memory is accessible from all cores
and can be used for co-operative working within a block. Each block may allocate an area of shared memory, and
both read and write to all locations within that area of memory. The memory itself is similar to a L1 cache on a
typical CPU, in that it is close to the processor. In fact, on later devices (those of compute capability 2.0 or above,
known as Fermi cards) a user-sized section will be used as a cache from the main memory of the device.

Global Memory is the global-in-scope memory location to which both the host and device can read and write.
It consists of the large part of the device memory advertised for the device - typically in the range of 128Mb or
256Mb for low-end cards, up to 4GB or more for specialist workstation cards. Only the host may allocate global
memory - no dynamic memory allocation is allowed on the device itself. Data may be copied from host-to-device
or device-to-host by the host only. However, the device may access the data using a pointer passed as a parameter
to the kernel function. Read/write speeds are in the range of 100GB/s, however they also come at the cost of a
high latency - anywhere between 400 and 800 clock cycles. This memory latency is a conscious design decision - a
trade-off that is often mitigated by providing enough work per SMP so that the scheduler may still make full use
of SMP whilst the memory fetch is occurring. Appropriate algorithms for this type of parallelisation exhibit a high
ratio of arithmetic operations to memory fetch operations.

Since the origins of the multiprocessor in the GPU are in implementing fast hardware pixel shaders, CUDA devices
before Fermi do not contain a call stack. If we wish to target the vast majority of GPUs, we must therefore do away
with many of the comforts of programming on a standard architecture - in particular, all functions are implemented
by inlining the definitions in the appropriate places. A corollary of this approach is that recursive functions cannot
be defined directly within CUDA on devices before Fermi. This condition is not as onerous as it first appears -
in practice, many recursive algorithms will achieve higher performance when re-written to take advantage of the
massive parallelism.

2.4 Massively Parallel Optimisation Patterns

Despite the distinct differences in hardware and architecture design across different graphics cards, there are a set
of common features that often require careful programming to utilise correctly.

2.4.1 Memory optimisations

For typical graphics card applications the memory transfer is not a bottleneck - the hardware is therefore not
optimised in this direction. Device memory is typically fairly slow, and host to device transfer is fairly limited.

There are a number of features available on the device to support the slow global memory.

Minimise data transfer to and from the device

The majority of co-processors are developed using the PCIe bus as a method of communication to the main memory
and processor. It is a fast method of data-transfer, however it is many orders of magnitude slower data transfer
between main memory and the CPU or global memory and the GPU. We must therefore ensure that data is
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transferred efficiently to and from the device, ensuring we only transfer what is required. In addition, there is an
overhead associated with each PCIe transfer. This is typically minimised by performing memory allocation and
data transfer in large blocks, rather than small sections.

Page-locked memory is another common feature that allows the device to access main memory in a just-in-time
fashion. This acts as a performance improvement on the device, but only in some cases, and for at most a 15%
speed up.

Tiling: Making use of shared memory

Our original formulation described a scheme for grouping threads into blocks by tiling the destination matrix. One
advantage that this has over other groupings is that for m × n cells we only need to load m + n distinct rows
or columns from the other matrices. By default, the hardware will load these values without broadcasting them,
meaning memory access is much higher than necessary. This is particularly relevant on older devices with no caches
between global memory and the multiprocessor.

In this case we can use the shared memory of the multiprocessor to store the necessary row and column values -
acting as a one-time cache. Before computing the dot products, the cells in a thread-block work co-operatively to
build the shared memory representation of the input matrices, before continuing on to use the values to compute
the individual dot-products. This can have a notable efficiency saving over each cell loading the same values
independently.

Functionally, shared memory on CUDA devices is split into a number of distinct banks - typical 16 or so, to
match the half-warp size. These banks can be accessed simultaneously, thereby increasing bandwidth to the
multiprocessor. The ideal memory access pattern is therefore that every thread reads consecutive 32 bit memory
locations. If two threads in the same warp access the same bank, the request is serialised and there is said to have
been a bank conflict. We should therefore ensure that our tile size and ordering is designed with the warp size in
mind, to ensure the least number of bank conflicts.

This technique is often seen in other pieces of hardware with multiple cores - the Cell processor, for example, uses
explicit Direct Memory Access calls to copy data from a main memory to local, low-latency memory on the device.

Coalescence

When we access the device memory, we do so using coalesced memory reads or writes - that is, we consider each
request from a thread in the current warp and bundle it up into a number of 32-byte, 64-byte or 128-byte memory
requests. The conditions for this coalescing differ between different chips and architecture versions, but in general
coalescing is best [taken advantage of] when threads in a warp are accessing consecutive memory locations. Note,
this is similar to the ideal memory access patterns displayed in the shared memory banks described above.

Spatial memory access

Where memory access is not regular enough to support a high-level of coalescence, there are other techniques for
improving memory throughput from the device. One such technique is to use spatial memory access, typically
known as texture caching. In this form, we take a two or three dimension array and store it according to 2D or 3D
location rather than in the typical row-by-row or column-by-column ordering. In graphics applications, this speeds
up operations involving textures, where a group of threads will work together co-operatively to compute a square
or cube section of the texture.

Constant values

For a small quantity of unchanging values, devices support a constant cache. This provides a low-latency cache
that is similar in access times to registers.

In order to support low-cost warp switching, all active warps retain their register and shared memory allocation
whilst other warps are running. Registers are therefore a finite resource that, when considered with the high-
latency of device memory, must be carefully allocated. Constant memory can help alleviate this register pressure,
in addition to improving access times for frequently accessed data. Constant data must be allocated on the host
and cannot be modified during device calls.

In CUDA devices, the constant memory size is 64KB, with each multiprocessor containing an 8KB cache for the
current working set. Thus, constant cache is best used where warps on a multiprocessor use a similar subset of
constant values.
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Latency Tolerance

In order to keep costs down, graphics cards typically feature global memory with a relatively high latency. In
typical graphics applications, this is not a major issue; immediate data access is not required. For general purpose
applications, this can prove to be a little more tricky. However a high computational intensity algorithm can
compensate by hiding memory latency - execution continues on the device until the data is actually required.

2.4.2 Optimising for the hardware

Massively parallel processors tend to develop with a high degree of hardware-variance. This is primarily due to the
fast pace of GPU development, where each manufacturer is straining to improve gaming performance. This has
lead to a rapid and widespread development of the architectural features. From the point of view of an application
developer, these differences between hardware targets must be considered to achieve speed improvements across
the board.

Core density and speed

In principal, the configuration of massively parallel hardware is straight forward - a large number of relatively slow
cores. In practice, the exact configuration can vary greatly between manufacturers and even between models. The
number of individual cores must be balance against the cost of the core, the speed and therefore the heat output
as well as the power requirements. Different cards will make different trade-offs.

The most obvious example of such differences in hardware is the typical design of ATI chips compared to NVIDIA
chips - the soon-to-be released Radeon HD 6870 is rumoured to have 1920 cores running at around 850MHz,
compared to the NVIDIA GTX480 which contains 480 cores at 1401MHz. This decision has trade-offs for algorithm
design - the ATI approach gives a higher peak GFLOP/s, however the memory bandwidth between the two devices
are similar, so the ATI card requires algorithms with a significantly higher compute intensity (that is, the ratio of
arithmetic operations to memory transfer operations) to fully realise the peak output.

Additionally, we can see much variance between how the cores are grouped into multiprocessors. In the latest
NVIDIA cards, for example, each multiprocessor contains 32 cores compared to the G80 and G200 architectures
that contained only 8 cores per multiprocessor. The practical influence of such differences will relate to exactly
how we divide up the work - where we have a larger number of cores we will need to ensure we have enough threads
in each block to use them all.

Memory size and configuration

Typical memory size for desktop graphics cards are around the 512MB to 1024MB range. For graphics applications,
larger memory provides little performance improvement except when using very large resolutions. Special purpose
hardware, such as Tesla, tend to move toward 4096MB or more to support more general purpose applications. This
memory is an absolute limit - no form of paging usually exist on such devices. Instead, we have to chunk data to
support larger datasets.

Cache configuration and size

Caching is an important part of speeding up reads and writes for desktop processors, however, early massively
parallel graphics cards featured very little in the way of caches. This reluctance stems from the type of applications,
those using a high compute intensity to hide memory latency. Where caching was useful, it was recommended as
a manual memory allocation to on-chip of shared memory, as in the tiling example described previously. This
approach has the advantage of supporting the processors in a predictable and accurate way.

The latest cards from both NVIDIA and ATI support a small amount of L1 cache on each multiprocessor. NVIDIA
allow some limited customisation of cache size on the latest Fermi cards, where 56 KB is available for both cache and
shared memory, and can be configured in either 16KB shared/48KB cache or vice versa. In addition, an L2 cache of
768KB shared across all multi-processors is available. ATI use 8kiB for an L1 cache for each multiprocessor, along
with a number of areas of shared memory that can be used to mimic caches. Differences in cache size compare
to typical desktop processors can be put down to the relatively slow speeds of each individual multiprocessor,
combined with the ability for applications to hide memory latency in other ways.
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Super-scalar execution

A recent advance in design for graphics card is the addition of a number of cores dedicated to super-scalar execution.
Often known as instruction level parallelism, it allows two or more consecutive instructions to be executed in
parallel, on the condition that the two instructions are independent. In a massively parallel setting this is supported
by providing double the number of cores.

Hardware with such a design is therefore best supported when super-scalar execution is possible - we must therefore
design kernels with independence between subsequent instructions. In the worst case scenario - no super-scalar
execution is possible - will be using only 50% of the capacity based on a 50/50 split between the cores. In practice,
we may share some super-scalar cores between many standard cores. In any case, this hardware specialisation
requires very specific conditions to meet peak operating performance.

The GTX 460 is the first CUDA card to support such super-scalar execution. Each core includes two standard
execution units of 16 cores, and a third super-scalar unit of 16 cores. When a warp is scheduled to either standard
execution unit, the scheduler analyses the following code to identify super-scalar instructions, and schedules the
super-scalar unit appropriately. The 2:1 ratio between standard cores and super-scalar cores ensures at least a 66%
usage of the card in the worst case.

2.5 Massively Parallel Toolkit

Over recent years, there has been wide-spread research into the development of massively parallel versions of com-
mon algorithms. Prior work on vector multiprocessors, supercomputing and data parallel many-core architectures
can often find a place in the modern massively parallel programmers toolkit. These can take the form of primitives
for building massively parallel algorithms, and many of them are included in the CUDPP library that is shipped
with CUDA. These primitives are useful for building algorithms based on efficient building blocks, by adapting the
algorithm to use functions that are appropriate for massively parallel execution.

2.5.1 Scan

Parallel prefix sum better known as the scan operation was first described in the context of GPGPU programming
by Daniel Horn[33], but first developed in the early [] by. The scan is produced by taking a binary operator ⊕ along
with an identity l and an array of n elements [a0, .., an−1] and returning [l, a0, a0 ⊕ a1, . . . , a0 ⊕ a1 ⊕ . . .⊕ an−1].

Scan has a wide array of uses across massively parallel processing including a variety of sorting algorithm imple-
mentations (radix sort[65], quicksort[6], merge sort), searching techniques, sum operations and many other filtering
and reduction methods.

2.5.2 Reduce

A very common pattern in massively parallel programming is to perform some form of map function, applied to a
set of values by each thread or core, followed by a reduction operation - so-called Map-Reduce. This paradigm, first
developed at Google[19, 20] to use across massive clusters, it is now widely used in distributed massively parallel
architectures such as Hadoop[1]. Desktop MPP can also make fruitful use of this technique

Reduction on a massively parallel machine can be surprisingly nuanced. One technique is to use a series of parallel
scans to perform the reduction[33].

2.5.3 Sort

Massively parallel architectures are typically consider to be a poor target for sorting algorithms due to the lack of
parallelism. However, recent work suggests that sorting can still benefit from a massively parallel approach, with
a factor of 2 to 4 improvement suggested, and exceeding one billion 32-bit keys sorted per second. Whilst not the
factor 20 to 100 speed ups available in other applications, this is still a worth while improvement.

The most common method of sorting on massively parallel or vector machines builds on a radix sort[65], where
each digit is compared in turn, and the output sorted based on this comparison. Implementations, such as that
released as part of the CUDPP library[53], use the scan operation described above.

13



2.6 Conclusion

Massively parallel processors represent a useful alternative architecture for a significant number of algorithms.
The application areas of a MPP are, perhaps surprisingly, wide and varied; including applications both at the
high-performance and netbook ends of the scale. The utility of desktop MPPs as co-processors are starting become
apparent beyond their traditional use in graphics applications, a trend which will only continue as we aim to
maximise our performance per watt.

MPPs are distinct from traditional multi-core algorithms, and therefore require distinct execution patterns to
achieve maximum performance. The study of algorithms for such architectures has only just begun, however much
useful and practical work has been done and work on distributed massively parallel machines continues to influence
and support the field. Investigation into so-called primitives such as scans, reductions and sorts will ease the
construction of efficient algorithms on MPP.

We should caution that the state-of-art is surprisingly primitive - and support difficult to implement due to the
vast hardware diversity available. In the future, we hope to look towards high-level tools to support massively
parallel co-processing in a useful and practical way.
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Chapter 3

Dynamic Programming

Dynamic programming is a method for improving performance in algorithms that appeal to two key principles:
optimal substructures and overlapping subproblems[16]. The term dynamic programming was coined by Richard
Bellman in the early 50’s[21] to describe multi-stage decision problems, only later did he refine it to the modern
definition of nested decision problems. Programming, in this context, relates to the method of tabulation of the
values.

The application of this technique can result in significant performance improvements over a standard walk across
the state space, with benefits in line with the number of repeated elements. Importantly, the technique is both
easy to implement and widely applicable. Application areas vary from puzzles (Towers of Hanoi) to mathematical
sequences (Fibonacci number) to practical algorithms for optimisation including shortest path and minimum cost
algorithms.

3.1 Basic Conditions

3.1.1 Optimal substructure

Richard Bellman describe the key condition that functional equations for optimization problems must adhere to
as:

Definition (The Principle of Optimality). An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal policy with regard to the state resulting from
the first decision.[2]

An algorithm exhibits this property when the optimal solution to one problem can be computed by combining
the optimal solutions to some smaller problems in the space. The resulting algorithm is usually described as a
recursive functional equation - a form that naturally represents the principle of optimality, with solutions composed
of solutions to sub-problems.

Typically, computing the optimal solution for some problem consists of choosing between a series of sub-problems
by recursively solving each sub-problem and comparing them. The solution is then combined with some value for
the problem itself - typically the “cost” of making the choice.

There is a pattern for discovering optimal substructures in a problem:

1. Show the problem requires making a choice that requires solving one or more sub-problems.

2. Assume that for a given problem, you know the optimal choice to make at each step.

3. Subsequently, determine the sub-problems you would need to solve given the choice above.

4. Use a so-called “cut-and-paste” technique to show the solutions to the sub-problems must themselves be
optimal. This is done by contradiction, supposing that a sub-problem is not optimal then proving we can cut
out the non-optimal solution and replace it with the optimal solution to the sub-problem and resulting in a
better solution to the overall problem[16].
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3.1.2 Overlapping sub-problems

Adhering to the Principle of Optimality is sufficient for the dynamic programming technique to hold; in this form
it is often described as divide-and-conquer, and is described in Section 3.2. However, to achieve a performance
improvement an algorithm must also exhibit overlapping subproblems. Where sub-problems overlap, we can save
time by storing the result of each computation and reusing the stored values where possible.

The performance improvement will be dependent on the amount of overlap between different subproblems.

3.2 Comparison to similar techniques

Divide-and-conquer is a technique with very similar conditions to dynamic programming. It does not require that
the problem consists of overlapping subproblems, instead considering sub-problems that share no elements with any
other[16]. This allows the division of work for any problem without reference to any other without duplicating work.
As such, divide-and-conquer techniques tend to exhibit better parallelism than dynamic programming algorithms.

Greedy algorithms are another related category of algorithms, where instead of considering all paths through the
state space, as in dynamic programming, we consider only a single path. It is termed greedy because at each step
where a choice is made over the decomposition of the input, a greedy algorithm selects a locally optimal choice.
Local in this context means we decided what to do next based only on what has come before; we do not lookahead
by exploring various different paths, as we do in dynamic programming. We hope that making such locally optimal
choices at each step will lead to a globally optimal solution; however, this is only guaranteed when the greedy
choice property holds, that is a locally optimal step is part of the optimal solution. [16] Certain greedy algorithms
can be considered as a refinement of an equivalent dynamic programming algorithm. [5]

3.3 Implementation techniques

Implementation of a dynamic programming algorithm will tend to follow a set of steps:

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution in a bottom-up fashion.

4. Construct an optimal solution from computed information. [16]

The technique described above is tabulation, as referred to in the programming of dynamic programming. The
values computed from the bottom up are stored in a table, and used in computing subsequent values. When all
required values are computed, we read the result from the target cell.

In many optimisation problems, the resulting value may not be the only piece of information required - we may
also require the path through the table to that destination. This can be solved using a top-down traceback across
the table, where we inspect the final cell to determine the sub-problems that contributed to the final result. We
then do the same for each sub-problem in turn, building up a picture of how we computed the final value. Such a
scheme is used in the Viterbi algorithm[63]. This information could also be stored as we compute each cell, at the
cost of storage for a larger data-structure.

The bottom-up tabulation method assumes that all smaller problems than the solution will need to be solved in
order to compute the solution. In cases where this does not hold, we will be evaluating a number of sub-problems
that are never required. Memoization is a solution to this problem - storing sub-problems as they are computed
- like a memo. In memoization we compute the values top-down, as in the natural recursive solution, but instead
of recomputing sub-problems, we store and re-use the result. In practice, we might still use a table to store the
values. At each and every call, we would then check whether there was an entry in the table, and compute one if
not. In cases where we compute all values, the bookkeeping overhead for memoization tends to allow tabulation
to outperform memoization. Where we do not need all sub-problems, the tables are turned, and memoization can
outperform tabulation.

An additional problem with tabulation is that it assumes we know the bounds of the sub-problems and therefore
the dimensions of the table. We will also need a method for ordering computations the table that considers the
sub-problem relation. With Memoization, we can use a form of hashing on the parameters to store values so that
we do not need to know before hand which values are to be computed.
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3.3.1 Tabulation techniques

For the purposes of this section, tabulation refers to the technique of building a data-structure for storing and
retrieving values representing sub-problems. The traditional mechanism for tabulation in the context of dynamic
programming is to build a table with different dimensions representing each parameter. Typically, this table is then
built from the bottom up by filling the cells of the table in some order that ensures dependencies are resolved. The
bottom-up tabulation technique can be declared more formally by describing an inversion of the order of evaluation
on the recursive functions[7].

Tables are not the only form of tabulation we can consider. Tabulation techniques for memoization can be described
by the following two criteria:

1. storing, at each stage, those previously computed values for f which are needed to continue evaluation of
f(x0);

2. determining for a given argument x whether or not the value f(x) has previously been computed[4].

The implication of criteria 1 is that we only need to store those values which will be required in furthering the
evaluation of the function. Where the table technique can be wasteful of both space and time, evaluating unused
values and storing data beyond the shelf life, memoization can make use of time and space efficiencies implicit in
the dependency graph.

In practice, memoization is often implemented using a sparse data-structure, such as a table, when space is not a
concern, and some form of hashed data structure when it is. In the latter case, a hash of the sub-problem acts as
a key for indexing and retrieving values[16].

[15] describes the elimination of redundant recursive calls through program transformations based on function
schemas of the following form:

f(x) = if p(x) then a(x) else b(x, f(c1(x)), ..., f(cn(x))) (3.1)

Where the functions c1 to cn are described as descent functions, and used in descent conditions under which the
program can be transformed. Four transformations are given as part of the paper. These transformations work
to generate an equivalent definition where storage is reused by storing only those values required for following
computations. The resulting program implements something akin to memoization, where limited storage is used
to store only those values required in a top-down evaluation. The solutions can be transformed to an iterative
approach through a straight-forward transformation that produces a bottom-up solution, much like tabulation but
without the redundant storage. Similar techniques are described in e.g [10].

[42] builds on this work to describe a series of static program analyses and transformations that can adapt a
straightforward recursive function to cache the results of sub-problems. Once again this displays a hybrid approach
to tabulation, where cached results are only stored for as long as required. A 3 step process takes place to instrument
the program to cache the values, to introduce static incrementalization, where function calls are extended to include
parameters representing cached values and finally to prune all unneeded values.

3.4 Applications

Applications of the dynamic programming technique are vast and varied - from items of mathematical interest
to those of practical interest. Simple examples include efficient computation of the Fibonacci Sequence[54] and
the Towers of Hanoi problem[60]. Matrix chain multiplication is another commonly cited example[16, 3]. Many
shortest path algorithms can also be considered as dynamic programming algorithms, including Dijkstra’s shortest
path algorithm[59] and the Bellman-Ford algorithm.

Another common example are string algorithms including longest common subsequence and substring, longest in-
creasing subsequence and edit distance algorithms such as the Levenshtein distance[54]. These string algorithms are
widely used in adapted form through bioinformatics for sequence alignment, including the Needleman-Wunsch[50]
and the Smith-Waterman[57] algorithms.

Bioinformatics is a perfect example of the utility of dynamic programming algorithms. The most widely used
textbook in biosequence analysis[22] has been counted[25] to list 11 applications of dynamic programming in the
introductory chapter. In a later chapter, the book describes the statistical framework of Hidden Markov Models,
in which dynamic programming algorithms play a leading role. The Viterbi[63], Forward and Backward algorithms
all use dynamic programming. HMM algorithms have wide uses, from speech, gesture and handwriting recognition
to convolution codes for cellular networks, modems, satellites, wireless LANs and other communication networks.
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Bioinformatics also use a variety of HMMs to represent biological features, with the Viterbi algorithm heavily used
in profile models[22, 23] amongst others.

Dynamic programming is useful in other language parsing frameworks. The CYK and Earley algorithms use
dynamic programming to parse languages described by Context Free Grammars. CFGs may be extended with
statistical features to create Stochastic Context Free Grammars, using the similar algorithms for parsing. SCFGs
may be used to perform RNA secondary structure prediction.

This section is by no means exhaustive; the beauty of the dynamic programming method is the wide-spread
applicability. Given a decision problem made of optimal sub-problems, of the kind found in many practical problems,
chances are dynamic programming will be suitable. Examples of practical problems could be partition problems[54],
optimal routines for factory or scheduling work[16] and minimum weight, distance or height problems[54].

3.5 Models of Dynamic Programming

3.5.1 Sequential Decision Processes

One of the early models of dynamic programming was to describe optimisation problems as discrete decision
processes extended with a cost structure to form sequential decision processes[35]. A solution may then be found
by testing the principle of optimality against this model, and then deriving the recursive equation to compute the
solution from the SDP. [48, 49] have worked to formalise the Principle of Optimality as a monotonicity condition.
[58] discusses the question, and determination, of the validity of the Principle of Optimality, in process of which
they also consider the validity of monotonicity conditions. The derivation of simplified algorithms for discrete
decision problems from a general algorithm is described in [8].

3.5.2 Non-serial Dynamic Programming

Later work generalised from sequential or serial models based on lists or strings to a more generalised tree struc-
tures to solve non-sequential problems[31, 30]. Such work has focused on the separation of the enumeration of
the structure from the evaluation of the cost of that structure, allowing different computations using the same
enumeration of the structure. Such a pattern has been described as an exhaustive search, allowing as it does for
generating all candidate solutions to determine the optimal solution. This model has been placed in a categorical
setting, a technique that can result in a neater formulation. [3, 18] Similar work has been completed by [56, 55]
using problem reduction theory. [17] also describes modelling dynamic programming problems and solutions using
relational calculus.

3.5.3 Algebraic Dynamic Programming

Algebraic dynamic programming[25] is a technique that also considers the separation of structure from the eval-
uation of the structure. However, it chooses to describe the search space as a yield grammar - a tree grammar
generating strings - and an evaluation algebra to describe the evaluation. Under models with separate methods for
enumerating the search space, we may consider the evaluation function as choosing between previously enumerated
paths through the state space. Implementations transparently interleave the two methods to achieve the efficiency
of traditional implementations.

3.6 Parallelisation on Massively Parallel Architectures

The majority of work completed in this area has focused on porting specific applications to the architecture (see
Section 4.1.3 for examples), with very little focus on generic techniques. A recent paper has developed Algebraic
Dynamic Programming to target GPUs as a back-end[? ]. It uses a diagonal technique to evaluate the dynamic
programming table; this works because each dimension of the table represents a piece of sequence data, and ADP
grammars only allow results from shorter substrings.

3.7 Conclusion

Dynamic programming is a flexible, simple and widely used tool for optimisation problems of all shapes and sizes.
Dynamic programming can be modelled and understood in many different ways; this flexibility is a key advantage
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helping map a vast number of problems to a dynamic programming solution. Many different techniques exist for
implementing dynamic program, from tabulation to memoization and everything in between; support can thus be
develop flexibly depending on exact form of the problem.
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Chapter 4

A Case Study: Bioinformatics

Perhaps somewhat surprisingly, Biology has gained a distinct computational focus over the last two or three
decades. By considering DNA and proteins as a sequence of characters, we may perform statistical analysis to
determine features such as familial similarity, alignment and the creation of trees of relations or phylogenies. These
techniques have been driven by a rapid expansion of sequence data available for a wide-variety of organisms. Whilst
computational analysis can never supplant the development of theories through empirical results, in can work to
focus experimental efforts on important or significant areas.

The growth in the available sequences - with databases in the range of gigabytes of data - has emphasised this issue,
making it increasingly important to develop efficient and effective techniques for analysing sequence data it simply
isn’t possible to analyse through careful empirical study. Where the growth in sequence numbers is out stretching
our growth in CPU performance for floating point operations, the resulting gap is problematic for researchers in
this area. Massively Parallel Processors are thus becoming a topic of great interest for Bioinformatics researchers as
a way of accelerating the floating-point operations using hardware that is readily available, cheap and scalable. In
particular, the ability to run the same code on the desktop or notebook as a high-performance cluster is invaluable.

Almost all algorithms in Bioinformatics are based upon choosing the most statistically likely way of combining some
data, whether that be building phylogentic trees or aligning sequences. These are classic optimisation problems;
most make use of dynamic programming to acheive respectable performance.[22]

In this chapter we shall briefly describe a number of applications within Bioinformatics that make use of the
dynamic programming technique, and attempts thus far to port applications the GPU or other massively parallel
processors.

4.1 Pairwise Sequence Alignment

One of the earliest computational requirements in Bioinformatics was to compare two sequences to determine how
related they are. This is performed by aligning parts of the sequences that are statistically similar, termed a
pairwise sequence alignment.

Figure 4.1 shows an example alignment. The centre line is the alignment between the two sequences, where
characters represent values that are identical in both sequences, and a + represents two characters deemed similar.
An alignment will be described in terms of substitutions, insertions and deletions. Similarity in this case is
determined by a substitution matrix - a table of values detailing the cost of substituting one character for another.
A more likely than pure chance substitution is given a positive cost - or score - whilst a less likely than chance
substitution is given a negative score.

This scoring is important; pairwise alignment techniques must choose between multiple alignments by determining
which alignment best fits according to a scoring scheme. Substitution matrices commonly used include BLOSUM50
and PAM.

HBA_HUMAN GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKL
G+ +VK+HGKKV A+++++AH+D++ +++++LS+LH KL

HBB_HUMAN GNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKL

Figure 4.1: A sequence alignment between a fragment of human alpha globin and human beta globin.
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4.1.1 Needleman-Wunsch

The simplest form of alignment is global alignment, where we assume that we need to match the entirety of both
sequences together, allowing for some gaps. This algorithm is known as Needleman-Wunsch[50], with a more
efficient version described by Gotoh[26].

The algorithm is normal described by a recursive functional equation:

F (i, j) = max

 F (i− 1, j − 1) + s(xi, yj)
F (i− 1, j)− d
F (i, j − 1)− d

where F (i, j) is the score of best alignment of the first sequence and second sequence up to and including positions
i and j respectively. Informally, we say that the best alignment between the two sequences up to that point is the
maximum value from choosing between substituting, inserting or deleting the characters at i and j having computed
the best score up to those points.

4.1.2 Smith-Waterman

Smith-Waterman is similar in character to Needleman-Wunsch, however it instead focuses on local alignment, that
is alignment between substrings of the two sequences.

F (i, j) = max

 0F (i− 1, j − 1) + s(xi, yj)
F (i− 1, j)− d
F (i, j − 1)− d

The essential difference here is the ability to reset the score to zero if at any point all previous options have provided
a negative score. Thus, to retrieve the score of the maximum alignment between two substrings we must find the
maximum value of F (i, j) for all lengths of substring i and j.

By necessity, both pairwise-alignment techniques described here use dynamic programming to ensure the end-
result is feasible to compute. The implementation typically comes in the form of a two dimensional table, where
the co-ordinates in the table represent i and j.

4.1.3 Massively Parallel Implementations

An early piece of work[39] used OpenGL to implement Smith-Waterman using a method of diagonalisation, where
all values on a diagonal in the dynamic programming table are computed in parallel. In practical terms, this was
achieved by indenting each row using an offset that forced the independent cells to appear in the same columns.

This technique has been described by the developers of CUDA-SW++ as intra-task parallelism, where multiple
threads work co-operatively to compute a single table.[40] The alternative is inter-task parallelism, where each
thread works independently on a problem - in this case a single table per thread. The paper found that inter-
parallelism was more efficient, but intra-task better supported longer sequences. CUDA-SW++ takes a hybrid
approach; shorter sequences are computed using inter-task parallelism, and longer with intra-task. We discuss
these concepts in the next chapter (Section 5.4) in terms of sequence-per-thread and sequence-per-block in the
context of similar algorithms in Hidden Markov Models. A follow on[41] proposed improvements to the technique
using a vectorised approach.

Needleman-Wunsch has been used as one of a number of case studies comparing implementations on FPGAs, GPUs
and CPUs, with researchers finding the GPU to be both efficient and easier to develop when compared to other
solutions[14]. [45] corroborated this result through the development of Smith-Waterman algorithm for GPUs, and
subsequently comparing against the BLAST and SSEARCH, finding performance improvements of 2 to 30 times
faster. Both [45] and [40] found that ordering the sequences by length improved inter-parallelism performance.

4.2 Hidden Markov Models

Hidden Markov Models are a form of generative statistical model, where a set of hidden states determine the output
sequence. It can be used to determine various probabilities associated with that sequence. It has an increasingly
wide variety of practical uses, within bioinformatics and the wider scientific community, including DNA and protein
sequence alignment and profiling.

Informally a Hidden Markov model is a finite state machine with three key properties:
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1. The markov property - only the current state is used to determine the next state.

2. The states themselves are hidden - each state may produce an output from a finite set of observations, and
only that output can be observed, not the identity of the emitting state itself.

3. The process is stochastic - it has a probability associated with each transition(move from one state to another)
and each emission (output of an observation from a hidden state).

The primary purpose is usually annotation - given a model and a set of observations, we can produce a likely
sequence of hidden states. This treats the model as a generative machine - we proceed through from state to state,
generating outputs as we go. The probabilistic nature of the model permits an evaluation of the probability of
each sequence, as well providing answers to questions such as “What is the probability of reaching this state?”.

Precisely defined, a Hidden Markov Model is a finite state machine, M = (Q,Σ, a, e, begin, end), with the following
properties:

• A finite set of states, Q.

• A finite set of observations Σ, known as the alphabet.

• A set of emission probabilities, e from states to observations.

• A set of transition probabilities, a, from states to states.

• A begin state.

• An optional end or termination state.

The process begins in the start state, and ends when we reach the end state. Each step starts in a state, possibly
choosing a value to emit, and a transition to take, based on the probabilities. We will denote the probability of a
transition from state i to state j as ai,j , and the probability of state i emitting symbol s as ei,s.

For the model to declare a distribution, it must relate a distribution over each transition. The emissions must also
be a distribution over a specific state: however, this distribution may include a “no-output” emission.

4.2.1 Key Algorithms

The key algorithms are designed to answer three questions of interest for real world applications. They all have
similar properties - in particular, they can all make use of dynamic programming to implement a recursive function.
Using a dynamic programming approach, we take a recursive function and store the results of each recursive call
into a table, with each parameter as an axis in the table. In algorithms which require the repeated computation
of sub problems, we can save time by using the stored result in the table, rather than actually implementing the
recursive call. In practise, we tend compute all entries in the table, in an appropriate order, before reading the
result from the desired row and column.

Viterbi

Problem: Given a sequence of observations, O, and a model, M , compute the likeliest sequence of hidden states in
the model that generated the sequence of observations.

The Viterbi algorithm provides an answer to this question. It makes use of the principle of optimality - that is, a
partial solution to this problem must itself be optimal. It decomposes the problem to a function on a state and an
output sequence, where the likelihood of producing this sequence and ending at this state is defined by a recursion
to a prior state with a potentially shorter sequence.

We can compute V (q, i), the probability that a run finished in state q whilst emitting the sequence s[1..i] with the
following formula.

V (q, i) = maxp:ap,q>0

{
ap,qV (p, i) if q is silent
ap,qeq,s[i]V (p, i− 1) if q emits

The result will be the probability of the sequence being emitted by this model. To compute the list of hidden
states, we will need to backtrack through the table, taking the last cell, determining the prior contributing cell,
and recursing until we reach the initial state.
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Forward & Backward

Problem: Given a sequence of observations, O, and a model, M , compute P (O|M), that is the probability of the
sequence of observations given the model.

The Forward algorithm performs a similar role to the Viterbi algorithm described above - however, instead of
computing the maximally likely path it computes the sum over all paths. By summing over every path to a given
state, we can compute the likelihood of the arrival at that state, emitting the given sequence along the way.

F (q, i) =
∑
p:ap,q>0

{
ap,qF (p, i) if q is silent
ap,qeq,s[i]F (p, i− 1) if q emits

In a model without loops of non-emitting “silent” states, the paths are finite, as the model itself is finite. Models
with loops of silent states have potentially infinite length paths. They can, however, be computed by eliminating
the silent states precisely, computing the effective transition probabilities between emitting states[22]. This can,
however, lead to a rapid increase in the complexity of the model; it is usually easier to produce models without
loops of silent states.

A similar equation can perform the same computation in reverse - starting from the start state with no sequence,
we consider the sum of all possible states we could transition to. This is the Backward algorithm, and the form is
very similar to that of the Forward algorithm. The dynamic programming table would be computed in the opposite
direction in this case - we start with the final columns, and work our way to the start.

B(q, i) =
∑
p:ap,q>0

{
ap,qB(p, i) if q is silent
ap,qeq,s[i]B(p, i+ 1) if q emits

Not only may this be used to compute the probability of a sequence of observations being emitted by a given
model, it also allows the computation of the likelihood of arriving in a particular state, through the use of both the
Forward algorithm, to compute the likelihood of arriving in this state, and the Backward algorithm, to compute
the likelihood of continuing computation to the final state.

Baum-Welch

Problem: Given a sequence of observations, O, and a model, M , compute the optimum parameters for the model
to maximise P (O|M), the probability of observing the sequence given the model.

Clearly, the models are only as good as the parameters that are set on them. Whilst model parameters can be
set by hand, more typically they are computed from a training set of input data. More precisely, we will the set
the parameters of the model such that the probability of the training set is maximised - that is, there is no way of
setting the parameters to increase the likelihood of the output set. This is known as maximum likelihood estimation
or MLE.

The solution can be determined easily if our training data includes the hidden state sequence as well as the set
of observables: we simply set the parameters to the observed frequencies in the data for both transitions and
emissions.

However, it is more likely that we do not have the hidden state sequence. In that case, we can use a MLE
technique known as Baum-Welch. Baum-Welch makes use of the Forward and Backward algorithms described in
the previous section to find the expected frequencies - in particular we wish to compute P (q, i), the probability
that state q emitted s[i]. This is computed in an iterative fashion, setting the parameters to an initial value, and
continually applying the formulae until we reach some prior criteria for termination.

The emission parameters can be computed using the following formula:

e′q,σ =

∑
i:s[i]=σ P (q, i)∑

i P (q, i)

Essentially, we are computing the number of occasions q emits character σ, divided by a normalising factor - number
of times q emits any output.

The transition parameters can be set by considering the forward and backward results in the following fashion:

a′p,q =


P

i F (p,i)ap,qeq,s[i+1]B(q,i+1)/P (s)P
r:ap,r>0 F (p,i)B(r,i)/P (s) if q emitsP

i F (p,i)ap,qB(q,i)/P (s)P
r:ap,r>0 F (p,i)B(r,i)/P (s) if q is silent

23



4.2.2 Example applications

Pair Hidden Markov Models

Pairwise alignment can be placed in a fully probabilistic setting by using a form of Hidden Markov Model known
as a pair HMM. This HMM differs from that described above by including multiple output sequences - each state
(or transition, depending on whether the model represents a Moore or Mealy machine) may emit characters to
multiple sequences.

A pair HMM allows output to two sequences at once, which allows the model to emit an alignment. We model
the process of aligning the sequence by providing a state for each alignment method e.g substitution, insertion and
deletion. The probabilities can be set using observed data; the final score also represents the likelihood rather than
an arbitrary score as in the standard models. An extended model allows for local alignment by including states for
modelling random emission before and after the alignment states.[22]

Profile Hidden Markov Model

A common case in bioinformatics is to have a group of related DNA or protein sequences, perhaps discovered
empirically, and to subsequently find other related sequences in a database. Pairwise aligning each candidate with
all the sequences in the family is expensive; we instead want to identify the statistically important features of that
family. A profile hidden markov model is a type of HMM that describes a family of sequences as a profile[22]. A
profile models the likelihood of a given sequence corresponding to the described family, by performing an alignment
to that profile.

We developed a prototype implementation of a profile model using CUDA. This informed the decisions we made
in the construction of HMMingbird; a detailed description of the techniques we used is given in the next chapter,
along with the results achieved by these methods. We achieved similar performance using HMMingbird - up to
x25 faster.
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Chapter 5

HMMingbird: A compiler for Hidden
Markov Models

Practical implementation of the key algorithms described in the previous chapter are time-consuming and monotonous.
Ideally, such boiler-plate code would be generated by high-level descriptions of the problem domain. Prior work,
such as HMMoC[43], has focused primarily around the use of code generators to speed development time for tech-
nically able users by generating a large amount of the boiler-plate code required. Whilst this approach is a flexible
and practical tool for the few users with the appropriate skills - and can provide an efficient CPU implementation
- the potential audience is much reduced.

HMM applications often require significant computing time on standard desktop hardware. Applications such as
gene-finding or profiling require evaluating the HMM across tens of thousands to millions of different sequences,
often taking in the order of minutes to hours. In addition, the quantity of data over which we wish to evaluate is
ever growing, resulting in an insatiable need for improved performance from HMM tools that naturally leads to
investigation of alternative desktop hardware and software configurations.

The HMM algorithms are often time-consuming to perform for the typical applications in Bioinformatics, such as
gene finding or profile evaluation, where the size of the input set numbers in the hundreds of thousands to millions
and can take minutes or hours to perform. It is therefore vital that we use the existing hardware as effectively as
possible. One advantage of developing a compiler, or a code-generator, is the ability to target complex architectures
with efficient implementations that would be tricky and time-consuming to develop by hand. The high-level of data-
parallelism combined with the ability to parallelise optimisation problems based on decisions problems promotes
massively parallel processors as a tempting target architecture. In particular, the scalability of the system matches
the requirements of researchers in this area. They are ideal for large scale scientific computing of this sort, and an
excellent candidate architecture for improving performance in HMM applications.

We would like to combine the practical convenience of code generators with a rigorous approach to language design
to develop a domain specific language for Hidden Markov Models, that allows us to target massively parallel
processors, in the form of general purpose graphics cards. We strongly feel that high level problem descriptions
are an ideal way of expanding access to the power of the desktop MPP to a wider audience. In this chapter, we
describe the development of such a system for HMM’s.

• We describe the syntax of a formal description language for Hidden Markov Models (Section 5.3), exploring
the language through a series of examples. As well as providing a concise and elegant system for describing
the models themselves, we develop a procedural language for describing which algorithms are to be performed,
and in which order. This supports a high-level of customisation without requiring the modification of the
generated source code, unlike existing tools.

• The common algorithms are all dynamic programming algorithms with certain properties. We describe
those properties, use the common elements to develop a basic parallel framework for dynamic programming
algorithms, and subsequently use that to implement the Forward, Backward and Viterbi algorithms.

• A naive implementation of the standard algorithms often leads to poor runtime characteristics. We therefore
describe a series of algorithm and micro optimisations including improvements based on the division of labour
across the GPU, memory storage location choices, reduction of divergence and reduction of limited runtime
resources (registers, shared memory etc.).
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• We judge the success of our approach by comparing the execution time to benchmarks for two applications.
For each application, we shall also describe a reference implementation in the definition language, as an
informal way of judging the method of model description. The applications are:

– The simple but widely known occasionally dishonest casino example, described in Section 5.3.1, bench-
marking against HMMoC.

– A profile HMM, described in Section 5.3.2, benchmarking against HMMER, HMMoC and GPU-HMMER.

5.1 Hidden Markov Model Design

5.1.1 Model Equivalence

Hidden Markov Models are often described as probabilistic automata, and as such we can often bring many of
our intuitions regarding pure finite automata to bear against them. One particular area of interest to us is the
isomorphism of Hidden Markov Models - when do two HMMs represent the same underlying process? This is not
only a theoretical question, but a practical one as well - by defining a range of equivalent models we may find an
isomorphic definition that better suits implementation on a given GPU. This may take the form of a systematic
removal from the model that simplifies computation. One such concrete example is that of silent states - those
states which do not emit any character in the alphabet when visited - elimination of which can reduce difficult
immediate dependencies.

The identifiability problem encompasses this question:

Two HMMs H1 and H2 are identifiable if their associated random processes p1 and p2 are equivalent.

It was first solved in 1992 by[28] with an exponential time algorithm, with a later paper describing a linear time
algorithm[24].

5.1.2 Emitting states and emitting transitions

Our description of the model allows each state to emit a character from the alphabet. However, there exists an
equivalent definition that supports emission on characters on transitions rather than states. Informally, we can
explain the equivalence by noting that any state-emission model can be trivially converted to a transition-emission
model by setting the emission value on all input transitions to the emission on the state. Transition-emission models
can be converted by taking each emitting transition and converting it to a transition, followed by an emitting state,
followed by a single silent transition to the original end state.

Note that it is possible to mix and match transition and state emissions, as long as the two do not contradict - that
is, that a transition to a state and the state itself do not both declare an emission. This enforces the condition that
we can only emit at most a single symbol each step. Given a HMM, we may find advantage in describing the model
in one form or another - or a mixture of both. For the user, we can reduce repetitions in the definition by allowing
states with single emission values to declare them on the state itself, rather than declaring the same emission on
each transition. In addition, emission on transitions can allow a reduction in states when each transition requires
a different emission set, that would otherwise have to be modelled as separate states.

5.1.3 Silent States

Any state that does not declare an emission, either on any incoming transitions or on the state itself, is defined as
a silent state. This not only provides a notational convenience, grouping common transitions, it can also reduce
the number of transitions within the model. As we can see from the algorithms in Section 4.2.1, the number of
transitions is the primary factor in determining the run-time of the algorithm.

A classic example[22] describes a lengthy chain of states, where each state needs to be connected to all subsequent
states. We will later describe the model (Section 5.3.2) that has exactly this pattern. We may replace the large
number of transitions with a parallel chain of silent states, in which each emitting state links to the next silent
state in the chain, and each silent state links to the current emitting state. In this way, we can traverse from any
emitting state to any other emitting state through a chain of silent states.

It is important to note that this process can change the result of the computation; it may not be possible to set
the parameters in such a way that each independent transition value between states is replicated in the series of
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transitions through silent states. For some models this may not influence the result unduly - large models often
require unrealistically large data-sets to estimate independent transition parameters.

In a sequential computation reducing the number of transitions directly affects the run-time. In a parallel com-
putation, other factors come into play. Silent states may introduce long chains of dependent computations; in a
model where all states emit, the likelihood of each state emitting character x at position p depends only on those
values from position p - 1. When we have silent states, we may have a chain of states that do not emit between
emitting states. This chain must be computed sequentially, thus reducing a potential dimension for parallelism, as
described in Section 5.4.1.

We note that a silent state may be eliminated in the same way that it is introduced, through careful combination
of transition parameters - each transition to the silent state is combined with each transition from the silent state.
By eliminating such dependencies, we ensure that we can parallelise over each column in the dynamic programming
table.

Given a model M with a set of transitions t and states s
for each silent state sx do

for each input transition ti do
for each output transition tk do
tn ← titk
Add tn to t

end for
end for
Delete sx and all transitions to/from sx

end for

Figure 5.1: Algorithm for silent state elimination

Elimination comes at a cost - for each silent state with n input transitions and m output transitions, we will now
have nm transitions. This is obvious when we consider that the reason for introducing silent states was a reduction
in transitions. It may, therefore, be best to balance the elimination of silent states with the number of transitions
as required to optimise any parallel HMM algorithm.

5.2 Prior Work

As a basis for the system, we use the code produced by HMMoC[43], a tool for generating optimised C++ code for
evaluating HMM algorithms, written by Gerton Lunter. HMMingbird is considered as the first step to rewriting
HMMoC to utilise the power of desktop GPGPU’s. HMMoC is based upon a HMM file exchange format that uses
XML; the format allows a description of a HMM, and describes which algorithms to generate. It features a generic
macro system and the ability to include arbitrary C. It generates an optimised set of C classes that can be included
by the user in there own projects, providing an efficient HMM implementation.

Other prior work in the area includes BioJava[32], a Java library for Bioinformatics that includes facilities for
creating and executing Hidden Markov Models. Tools for specific HMM problem domains have also been developed.
So called profile HMM’s are one of the main uses within bioinformatics. One of the most popular tools in this area
is HMMER[23].

There are a number of notable elements of prior work to port such HMM applications to GPU architectures.
ClawHMMER[34] was an early attempt to port HMMER to streaming architectures uses the now defunct BrookGPU[9]
programming language. More recent attempts have include GPU-HMMER[64], which instead uses the more mod-
ern NVIDIA CUDA Framework. CuHMM[38] is an implementation of the three HMM algorithms for GPUs, again
using CUDA. It uses a very simple file interchange format, and does not provide native support for HMM’s with
silent states - although the latter restriction can be mitigated through silent state elimination.

5.3 Language Design

A primary aim of the software tool is to provide the benefits of GPGPU’s to a wider audience. As a result, the
design of the language is vital part of the problem: it must be concise, simple and easy to understand, and prove
itself to be flexible enough to support new formulations as and when they appear. No such general language has
been attempted before, to the best knowledge of the author.
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A primary design decision was to assume that the user will not, in any reasonable course of action, be required to
modify the generated code, as in HMMoC. Taking such an approach when faced with generating code for a GPGPU
would reduce the potential audience to such a small group. Instead we take the view that a high-level specification
language is the tool of choice, allowing a wide-variety of users, with a wide-variety of technical expertise, to access
the full power of the GPGPU.

In the following sections we will describe the language through a series of examples, gradually exploring different
areas of the domain.

5.3.1 Occasionally Dishonest Casino

1: 1/6
2: 1/6
3: 1/6
4: 1/6
5: 1/6
6: 1/6

1: 1/10
2: 1/10
3: 1/10
4: 1/10
5: 1/10
6: 1/2

Fair Loaded

Start End

1 0.05

0.1

0.95 0.9

Figure 5.2: The Hidden Markov Model representing the Occasionally Dishonest Casino

We will first examine a commonly used example - that of the Occasionally Dishonest Casino. The idea here is that
we have a casino that will usually use a regular die, but occasionally they may switch to using a loaded die for a
few turns in order to gain an advantage. A loaded die is one that has been fixed to land on one more faces with a
higher probability than normal. A HMM is an ideal model for this sort of system - we have an output sequence
that is generated by a hidden state - in this case, which die has been chosen. We thus provide two states, one fair
and one loaded. Each state has a set of emission probabilities - the fair is even and the loaded die shows a skew to
certain output characters. Figure 5.2 is the diagram of the model.

hmm casino {
alphabet [1, 2, 3, 4, 5, 6];
startstate start;
state fair emits fairemission;
state loaded emits loadedemission;
endstate end;
emission fairemission = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6];
emission loadedemission = [0.1, 0.1, 0.1, 0.1, 0.1, 0.5];
start -> fair 1;
fair -> fair 0.95;
fair -> loaded 0.05;
loaded -> loaded 0.97999;
loaded -> fair 0.02;
loaded -> end 0.00001;
fair -> end 0.00001;

}

Figure 5.3: The HMMingbird code for the casino example.

Figure 5.3 provides a code example for the definition of a casino HMM. We begin with a definition of the hmm
element. We can name our HMM, both as an aid to documentation and for identification purposes. In this case,
we have given it the name casino. Legitimate names may only start with letters, and contain letters or numbers.
Any further description of this model takes place in the form of a series of declarations within the curly brackets
{} of the hmm element. The declarations take place in no particular order. A single program may contain many
such hmm definitions.

The first important declaration is that of the alphabet. This defines the set of valid output characters, separated
by commas, and delimited by squares brackets []. Each element is limited to a single ASCII character in the
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current version.

We define the set of states using the state element. We can, and must, specify a single start and end state, using
the appropriate startstate and endstate keywords. We provide every state with a unique name, that can then
be used to define transitions between states. Each state element may define an emission value using the emits
keyword, that refers to a separate declaration describing the probability distribution over the alphabet. States may
also remain silent by omitting the emits keyword. In this case, we define two regular states - fair and loaded -
with appropriate emission values - fairemission and loadedemission.

The emission values are simply defined by a list of values corresponding to the order of the alphabet. Each value
is the probability of emission of the character at that position in the alphabet definition. In the fairemission
declaration, all outputs are equally likely, and so are set at 1/6. In the loadedemission declaration, the 6 has a
higher probability, and so the 6th element is set higher. It is desirable for a set of emissions to create a distribution
- in other words, they should sum to 1, as they do for both these cases. However, we do not enforce this restriction
for there may be some cases where a distribution may not be desirable.

Next we describe the structure of the graph by defining the transitions from state to state, with each including an
associated probability that determines how likely the transition is. Just like the emission declaration, it is usually
the case that we want to define a distribution over the transitions from a particular state. If all nodes provide a
distribution over both the emissions and outward transitions, then we have a distribution over the model. This
allows fair comparison between probabilities determined for different sequences. However, as with the emissions,
we do not enforce this rule, allowing a wide range of models to make practical use of the GPGPU.

To produce a completed program we still need to provide a main definition that describes which algorithms should
be run, and on which HMM definitions. We do this with the main keyword. Like the hmm keyword, further
declarations appear within the curly brackets.

main() {
cas = new casino()
dptable = forward(cas);
print dptable.score;

}

The basic declaration here is an assignment; the right hand part must be an expression, the left a new identifier.
The first statement defines an instance of the casino hmm we described above. This syntax will, in future, be
extended to allow parameterisation of the model.

The next step is to perform the algorithm itself. This takes place as a call expression, which uses the name of the
algorithm to run, and passes the HMM as a parameter. In this case, we run the viterbi algorithm with the HMM
cas. We currently support the viterbi, forward and backward algorithms. The parameter to the call is simply
an expression, so we may declare the casino inline like so:

viterbi(new casino());

The result of such a call is returned as the value of that expression. In this case, we have used the variable dptable.
This allows access to the entirety of the dynamic programming table.

Once we have run the algorithm, we need some way to return the results to the user. The print statement acts
as this mechanism, providing a limited system for returning the values in the dynamic programming table. Each
algorithm returns a dynamic programming table with appropriate attributes that we may access. In this case,
the only attribute of the forward algorithm is the score. We can refer to the attribute using a dot notation, as in
dptable.score.

5.3.2 Profile Hidden Markov Model

A profile hidden markov model is a type of HMM that describes a a family of DNA or protein sequences otherwise
known as a profile[22]. It models the likelihood of a given sequence corresponding to the family described by the
profile, by performing an alignment. An alignment describes the modifications required to change one sequence to
another, which may include inserting characters, deleting characters or matching characters.

This system can be described by a HMM of a certain form. We provide a set of states that represent a single
position in the model, and we can repeat these states any number of times to represent the likelihood of certain
symbols appearing at that position in the sequence. For each position in the model, we may match or delete
that position. Before and after each position, we may introduce characters using the insertion state. Typically,
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the model is “trained” using a parameter estimation technique such a Baum-Welch, setting each transition and
emission parameter as appropriate.

HMMER is a popular tool for creating and using profile HMM’s. It uses a custom file format to describe a
parameterised model. We have created a small script that converts the file format to our domain specific language.
We will examine some excerpts here.

As before we declare our model with an appropriate name - we simply use profile here.

hmm profile {

Since we are using protein sequences, this example has the alphabet set to the sequence of valid protein characters.

alphabet [A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y];

As in the casino example, we declare a start and end state. We can also see declarations for each position - with
each position containing a insert, delete and match state. Note that the deletion state does not declare the emits
keyword, indicating it is a silent state. It effectively allows the matching process to skip a position.

state D001;
state I001 emits emit_I001;
state M001 emits emit_M001;

We follow that up with the declaration of the emission values for each insert and match state. Although in this
case each state has an individual emission value, in other cases we may share emission values between states.

emission emit_I001 = [0.0681164870327,0.0120080678422,..values ommitted..,0.0269260766547];
emission emit_M001 = [0.0632421444966,0.00530669776362,..values omitted..,0139270170603];

We then describe the set of transitions. We show the transitions for the position 1, but each subsequent position
has a similar set of transitions.

M001 -> M002 0.985432203952;
M001 -> I001 0.00980564688777;
I001 -> M002 0.538221669086;
I001 -> I001 0.461778330914;
D001 -> M002 0.615208745166;
M001 -> D002 0.00476214916036;
D001 -> D002 0.384791254834;
beginprofile -> M001 0.750019494643;
beginprofile -> D001 0.249995126434;

One feature used by the profile HMM that has not been previously mentioned is the ability for transitions to include
emission values (Section 5.1.2). We allow this in addition to emissions on states, as there are cases where the most
compact representation will be one notation or the other. They are computationally identical; simply a notational
device. In this case, we emit a character as we transition, and not when arriving at the destination state. We do
not allow both a transition and the destination to emit a character - only one or the other or neither may emit, as
enforced by the compiler. We can then ensure that only a single symbol is emitted at each step through the model.

nterminal -> nterminalemitter 0.997150581409 emits emit_nterminal_to_nterminalemitter;

In the main definition, we perform the Viterbi algorithm to produce the score of the most likely path, and print
that score using the dot notation as above. However, unlike the casino example, by using the Viterbi algorithm,
we have access to another attribute: traceback. This returns the list of states visited on the most likely hidden
state path. By omitting to access this attribute we cause it not to be evaluated as part of the Viterbi algorithm,
thus increasing efficiency and reducing memory usage.

main() {
dptable = viterbi(new profile());
print dptable.score;
}
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By using the simple dot notation we produce just the result - either the final score or the traceback of the optimum
path. But what if we wish to investigate intermediate entries or observe sub-optimal paths? In these cases
we can print the entire dynamic programming table by placing an & at the end of the attribute name like so
dptable.score&. This prints all intermediate results as well as the final score. Note that due to optimisations
within the GPU code, we do not normally store the entirety of the table. Doing so will reduce the number of
sequences that can be processed at any one time, due to the increase in memory requirements.

5.3.3 Limitations

The definition language described here is somewhat immature at present. We make the following limiting assump-
tions :

• Only a single tape is to be used - multiple tapes are an expected extension. Each tape would contain an
alphabet, and emissions would be linked to particular alphabets;

• Single characters for emission values - in some cases we may require multi-character values;

• Only simple numbers and fractions are allowed in transition and emission probabilities;

5.4 Dynamic Programming algorithms for parallel computation

The algorithms described in Section 4.2.1 can all either be implemented with, or make use of, dynamic programming,
a form of optimised computation where we store and reuse intermediate results in order to avoid expensive re-
computation. This is possible because the problems exhibit the two key properties required - optimal substructures
and overlapping sub-problems. Computing the probability for a given state relies on computing the value for a set
of previous states with a shortened input - with the result being optimal if all the sub problems are optimal. In
addition, the value for the previous states may be reused for other computations at this position in the input.

There are a number of ways we may implement such a system. One popular method is memoization, where the
result of each function call is stored against the parameters for that call. Further calls with the same parameters
make use of the same result. Whilst this approach can be fruitful within a single thread, it is both difficult
to implement and potentially sub-optimal in a multi-threaded system. In particular, any system that took this
approach would need to ensure that threads had the requisite cross communication and appropriate locking to
ensure duplicate computations of a function call did not take place. This is a particularly difficult task within the
GPU environment, since it neither provides locking facilities nor does it perform optimally when used in this way.
It once again highlights the difference between multi-threading algorithms for CPUs compared to GPUs.

Fortunately, we have another way of implementing a dynamic programming algorithm that is much more suited
to GPUs. A lookup table is a common way of mapping the parameters of a dynamic programming algorithm to
the result of the argument. For most algorithms, the results of all cells in this table will be required at one stage
or another and so we may instead compute the values for this entire table before attempting to compute the final
result, so longs as we ensure any pre-requisites for a given cell are evaluated before the cell itself.

Figure 5.4 gives a small portion of a dynamic programming table for the casino example described in Section 5.3.1.

Initial ’3’ ’1’ ’6’ ’6’ ...
Start 1 0 0 0 0 ...
Fair 0 1/6 2.639×10−2 4.178×10−3 6.616×10−4 ...

Loaded 0 0 1.389×10−3 6.805×10−4 3.334×10−4 ...
End 0 0 0 0 0 ...

Figure 5.4: An example of a dynamic programming table for the viterbi trace in the casino example

In a traditional, serial, implementation we would compute each value in this table in turn, ensuring all dependencies
were met before computing a cell. In a parallel implementation, we have a number of options:

Sequence-per-thread We may keep with the same serial algorithm, but compute many such tables at once, relying
on a large input set to keep the device busy. In this case we would allocate a single thread to each sequence.

Sequence-per-block Alternatively, we can use a number of co-operative threads to compute the values in a single
table. Co-operation between threads is required so as to ensure prior dependencies are met before computation
of the current cell can continue.

31



Sequence-over-MP Finally, we may use a number of co-operative multiprocessors. Such co-operation is currently
difficult to achieve on NVIDIA GPUs. In addition, larger models are required to fully utilise many different
multiprocessors.

Option 1 is suitable for a large number of runs over smaller models. However, if there are a small number of
sequences relative to the number of cores, it is hard to fully utilise the device under this system. In addition, it
cannot necessarily make best use of the caching and localised memory features of the GPU, since each thread is
working independently.

Option 2 is suitable where we can find some way to sensibly divide the work between the different threads on the
GPU. This will rely on a way of identifying dependencies between states to ensure we can parallelise across the
states.

Option 3 is trickier on the current hardware. The easiest way to implement cross block communication on current
generation GPUs is to run a separate kernel for each independent set of events.

For our initial approach we will use Option 2, which provides most opportunity for utilising the caching aspects of
the multiprocessor without requiring expensive to-ing and fro-ing from the CPU to the GPU.

5.4.1 Silent State Elimination

One key problem for parallelisation is the dependencies between states. If we imagine the dynamic programming
table for these algorithms, with the each row marking a state, and each column a position in the output sequence,
we can see that the value at a given state and column may depend on values in the previous column; marking a
transition to the current state from the state in the prior column. We also note that any silent states - those that do
not emit any values - may be referred to by other states in the same column, since no emission has taken place. In
the standard dynamic programming implementation of these algorithms, we would simply ensure all dependencies
were met before evaluating a state. However, in a massively parallel system this is neither practical or desirable.

The solution is to eliminate the silent states, as described in 5.1.3. As it stands, we simply eliminate all silent
states. However, the cost may be mitigated by selectively eliminating silent states. In particular, long paths of
silent states are inefficient in terms of distributing work on a parallel machine, since the length is a lower bound
on the number of iterations required, and so we may choose to eliminate silent states so as to reduce such paths.
The same algorithm can be modified to perform such a task, since we remove silent states iteratively.

5.4.2 Dynamic Programming: Implementation

It is relatively simple to implement the first approach - thread-per-sequence - as described in Section 5.4, by taking
a straight-forward serial implementation to run on each individual thread. Nevertheless, by using the elimination
of silent states we can expose an extra dimension of parallelism along the states that will allow a block-per-sequence
approach, which should facilitate an improved use of the device.

Our first implementation of the block-per-sequence algorithm provides a thread for each state in the model. We
thus compute each column in parallel, synchronising after each one. Far more complicated distributions of work
are possible - for example, distributions by transition to different threads - however, for simplicity we will ignore
these extensions for our initial implementation.

A Shared Template Approach

The primary focus for our investigations is the ability of graphics cards to provide a useful speed up for Hidden
Markov Model applications. For the majority of applications the fundamental role which requires acceleration is
that of applying the models to a set of given inputs, rather than training the model parameters to begin with. The
reasons for this are twofold - we usually train the model once and once only, and against a smaller set of inputs
than those that we wish to run it over for the actual application. As such, we will focus for the remaining section
of the paper on the three estimation algorithms: forward, backward and viterbi. We also note that the forward
and backward algorithms play an important role in the Baum-Welch parameter estimation algorithm, and so the
implementation of the former is a pre-requisite for implementing the latter.

At this stage we can make a useful observation about the nature of the three algorithms - that they all have a similar
structure, and differ only on minor points. This is unsurprising, since each can be, and usually are, implemented
using the dynamic programming lookup approach described in Section 5.4. The forward and viterbi algorithms
are evidently similar - they traverse the model in an identical way, accessing the same cells at the same time. The
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differences lie in how the results from prior cells are combined - with the viterbi algorithm using a max operation,
whilst the forward algorithm sums over the prior cells.

On the other hand, the forward and backward algorithms differ only in the way they traverse the model, not the
way they combine the results. One way of handling the differences in traversal is to provide a modified version of
the model which describes a backward traversal. Such a model is simple to produce within the compiler as a form
of pre-processor. In this case, we can simply use an identical code base to implement the backward algorithm. One
caveat to this approach is the potential cost of duplicating of state and transition data on the device if we require
both the forward and backward algorithms. This cost may be mitigated by combining some invariant aspects of
the model, such as state and emission data, and providing a new version of the transition data.

Using these observations, we can develop a template structure for the three algorithms, that may be parameterised
to support any of them. Figure 5.5 gives a pseudocode description of the standard template. A by product of this
design decision is the ability to generate other algorithms with a similar pattern.

{s represents the dynamic programming table, indexed by state and position in sequence}
s = []
for character c in sequence at position i do

parallel for state in states do
sstate,i = 0
for each input transition tj with emission probability ej do
sstate,i = sstate,i op tjej,csstartstatetj

,i−1

end for
end for

end for

Figure 5.5: The basic shared template

5.5 Optimising Techniques

The basic template provides a suitable base from which we can start to apply specific optimisations.

5.5.1 Host to device transfers

A primary issue for CUDA applications is optimising the computational intensity ; that is, the ratio of IO to compu-
tations. On the authors hardware, memory bandwidth from host to device is pegged at 1600MB/s, whereas device
memory access occur at around 100GB/s, and operational speeds reach 900GFLOP/s for the GT200 architecture.
As a result, both memory allocation and host to device memory copy functions are comparatively expensive, par-
ticularly in terms of setup costs. To reduce such costs we take a brute force approach to memory transfer. We first
load the entire sequence file into main memory, then prepare some meta-data about each sequence. The final step
is then to copy both arrays en-mass to the host memory.

Another option is to use page-locked memory allocation, where the host data is never swapped out of main memory.
This technique is quoted as providing twice the host to device memory bandwidth. However, page-locked memory
is a limited resource, and over excessive use may cause slow-down.

5.5.2 Precision versus speed

A typical problem for applications of this sort is accuracy. The probabilities rapidly become vanishingly small,
often under-flowing the standard floating point data-types, even those of double width. One common approach is
to convert all operations to logspace by computing the log of all the input values, and converting each operation
(max, plus etc.) to the logspace equivalent. We can then represent the values in each cell as either float values, or
double values for slightly increased precision.

One important aspect of this debate is the structure of the current hardware - with a 8:1 ratio for single precision to
double precision instruction throughput, single precision operations can be significantly faster for some applications.
Practical implementations displayed inconsequential differences, in the order of 10%-30%, suggesting that memory
latency for each operation was an overriding issue.
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5.5.3 Memory locations

The CUDA architecture provides a number of disjoint memory locations with different functions and features. For
transition and emission values, which are fixed for all sequences, we make use of the constant memory - a small
area of cached memory that provides fast-as-register access with a one memory fetch cost on a cache miss.

Another fast access location is the shared memory. These are similar in form to a L1 cache in a traditional CPU,
however the allocation is completely user controlled. Each multiprocessor includes one such location, and as such,
it is shared between the blocks allocated to that multiprocessor. Each block has a segment of the shared memory,
which each thread in that block can access. Ideally, we would like to store the dynamic programming tables in this
fast-access memory. However, under the current CUDA architecture the space allocated for each multiprocessor
is 16384Kb. Such space confinements force a low occupancy value for each multiprocessor, resulting in very little
speed up from this particular optimisation.

5.5.4 Phased Evaluation

By providing a thread-per-state, we are beholden to the model to determine our block size, since all states share
a block. Since the block-size partly determines the occupancy of a SMP (number of threads per SMP), we may
have an unbalanced set of parameters. Additionally, we are constrained in the size of our models by the maximum
number of threads per block - typically 512.

To remove these unnecessary limitations, we must de-couple the number of threads from the number of states.
The most obvious way to do this is to share a single thread between multiple states, running through the states in
phases. In addition to allowing the block size to become independent of the number of states, this approach has
other benefits. By synchronising the phases across the threads, we can support some form of dependency on the
device - by ensuring that any dependents of a cell are in a prior phase.

5.5.5 Block size heuristics

One important measure of the effective use of a multiprocessor is the occupancy value - the number of warps per
multiprocessor. Recall that threads are scheduled in warps, 32 threads per warp, so this effectively describes the
number of threads that are active on an SMP at once. Active, in this case, is a statement of resource usage
e.g registers and is does not imply the thread is actually running. A high occupancy plays an important role in
supporting the scheduler to hide the high latency of global memory, by providing many warps to schedule whilst
memory access is in progress.

There are three factors which limit the occupancy of a multiprocessor:

• The number of registers per thread. Each multiprocessor has a limited number of registers, and thus limits
the number of threads that can be placed.

• The amount of shared memory per block. Recall that shared memory is allocated on a per block basis, not
per thread. Again, each multiprocessor has a limited amount of shared memory.

• The number of threads per block. Threads can only be placed on a multiprocessor in entire blocks.

Registers per thread and shared memory per block are both dependent on the kernel implementation alone. The
threads per block is set by a parameter, and is therefore customisable dependent upon the other factors.

It is important to note that achieving a high occupancy is not the be-all-and-end-all of GPGPU optimisation -
there may be trade-offs when modifying the above factors. For example, we may be able to increase the occupancy
by moving some values from registers to local memory, at the cost of increasing the number of device memory calls
required, which may in fact increase the time taken for the kernel.

Bearing these facts in mind, we can provide a heuristic for determining a suitable block size. NVIDIA provide a
CUDA Occupancy Calculator, which we can use as the basis for computing the values. The calculations used are
described in the Chapter 4 of the CUDA Programming Guide[51].

We take a straight forward approach to implementing the block size heuristics. We try a sequence of likely block
sizes, recording the occupancy for each one. For our candidate block sizes we take multiples of 16 from 16 to 512
plus the number of states. For devices of compute capability 2.0 we check in multiples of 32 - for devices lower
than that warps are executed in half-warps of 16 threads at a time, later devices execute a fall warp at once.
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5.5.6 Unused Attributes

Unused attributes may be both wasteful of space and time. For example, if we do not require the traceback of
the result of the viterbi algorithm, we should not allocate an array in memory for it, nor should we evaluate the
attribute on the device.

We can determine which attributes are used for a given call by providing a program analysis that associates each
use of an attribute with the dynamic programming table. We use that information when generating the CUDA
code to remove unused attributes at compile time.

5.5.7 Sliding Window Dynamic Programming Tables

As described in Section 5.4, we implement the dynamic programming algorithms as a series of lookup tables -
with the states on one axis and the position in the sequence along the top axis. A cell in this table represents
the probability at a given state and position in the table. However, we may not always require these intermediate
results beyond their use for computing other values in the table. This is the case when we have identified partially
used attributes - those where we only require the final value.

In these cases we can economise the table by noting that each of the given algorithms computes the value of a
given cell with reference only to cells in the previous or current columns - since we can have emitted at most one
character at this state. As such, if we do not require the intermediate results, we can implement a sliding window
across the table, storing only the current column and the previous column. At the end of each step we re-designate
the current column as the previous column, and use the previous column as the new current column, overwriting
any previously stored values as we go - cheaply performed using simple pointer manipulation. This mechanism
ensures we store only those values strictly required by the algorithm, thus avoiding excessive memory wastage.

If we consider that each sequence to be evaluated normally requires a O(mn) size table, where m is the number of
states and n the length of the sequence, and a sliding window scheme reduces that to an O(m) we can immediately
see the benefits. Allocating the entire dynamic programming table was therefore a significant area of memory
inefficiency, and resulted in an arbitrary limitation on the number of sequences that could be processed in one run
on the device.

This approach not only has memory allocation benefits, but can also provide improved memory performance by use
of fast-access shared memory. Under the current CUDA architecture the space allocated for each multiprocessor
is just 16384Kb. Such space confinements would allow very few blocks to share a single device, creating a low
occupancy value for each multiprocessor when attempting to store the entire table, reducing the effectiveness
under the normal table allocation scheme. However, under a sliding window, with the significantly reduced memory
requirements, occupancy is not impacted by placing the window in shared memory. The system as implemented
allows models with up to 512 states before the occupancy may be reduced, and even up to 768 may be safely
accommodated before occupancy is reduced below the 25% level recommended by NVIDIA.

Whilst this is successful in reducing the memory usage, it does mean that we are unable to recreate the backtracking
trace through the table. This can be rectified by allocating a separate table to store the backtracking data for
each cell - a table that is of a smaller size than the full table since each cell only needs to store the position of
the previous cell, and not a complete floating point number. In most cases, the number of states - the number of
possible prior positions - requires fewer bits than a full 32 bit float. For the forward and backward algorithms no
backtracking is required, and so there is no need for this extra storage.

5.5.8 Custom kernels for each program call

For each algorithm call in the program, we generate a different kernel call using customised kernel code. Doing so
allows allows the removal of a number of unnecessary runtime checks.

• We generate different code depending on the specified block size. If the block size that has been determined
(see Section 5.5.5) is smaller than the number of states, each thread needs to iterate over the assigned states.
This code is only generated in that case.

• For each call we determine which attributes are required - and in what form - and only generate the code
to store the attributes accessed (see Section 5.5.6). Since we determine whether we require simply the end
result or the entirety of the table, we can generate code that stores the intermediate results or accumulates
the attribute without storing it (see Section 5.5.7).
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5.5.9 Sorting Input

One observation we make is that a pre-sorted input sequence will have a more optimal execution pattern. This is
an optimisation that was also noted in GPU-HMMER[64].

5.6 Comparisons

5.6.1 The Occasionally Dishonest Casino

We describe the casino model in Section 5.3.1. It has been chosen as a simple example of a Hidden Markov Model.

No. of Seq. HMMingbird HMMoC1.3 Speed Up
2500 0.126 2.611 20.72
5000 0.149 5.526 37.09
7500 0.206 8.406 40.81
10000 0.222 11.028 49.68

Figure 5.6: HMMingbird versus HMMoC1.3 on the Occasionally Dishonest Casino

As a simple test for speed versus HMMoC we use a set of pre-generated sequences of various lengths.

5.6.2 Profile Hidden Markov Model

The structure of a profile hidden markov model is described in Section 5.3.2.

A profile HMM is one of the most widely used applications for HMM within bioinformatics. HMMER is a tool
that can create profile HMM’s and use them to search vast databases of sequences. It has been in development
for over fifteen years, and is highly optimised. In particular, it uses forms of corner cutting to remove swathes of
computations. Various attempts have been made to port HMMER to use GPU’s. The most widely known example
is GPU-HMMER[64], which provides a CUDA based mechanism for searching databases.
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Figure 5.7: Chart for a 10 state profile recognising the Thymidine kinase (TK) family, using the viterbi algorithm
to determine the best scoring path.

Our results show a significant (x2-x4) increase over HMMER, in line with the performance gains shown by GPU-
HMMER. It is particularly worth noting that GPU-HMMER is a hand-coded and optimised application for a
specific subset of HMM’s, yet HMMingbird outperforms it by between 15%-45% in these tests. Examining the two
programs under a profiler suggests that GPU-HMMER has a faster kernel, however this is offset by an inefficient
data transfer process. Another note of caution is that GPU-HMMER does some post-processing, which may also
account for some of the difference.

We also see significant performance gains when compared to HMMoC, with greater gains as we evaluate larger and
larger sequence databases.
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No. of Seq. HMMoC1.3 HMMingbird Speed Up
5000 4.809s 0.161s x29.87
13355 25.68s 0.449s x57.19
25000 49.548s 0.65s x76.23
50000 90.8s 1.111s x81.73
75000 168.376s 1.638s x102.79

Figure 5.8: Speed up versus HMMoC

5.7 Conclusions

Our tool significantly improves on prior work in two important areas:

• By providing a concise language for describing Hidden Markov Models. It is significantly shorter and clearer
than the equivalent descriptions for general purpose tools such as HMMoC.

• Demonstrates clear increases over CPU only methods on computation, and performance on-par with other
GPU tools, with a wider range of input models.

Previous attempts to describe Hidden Markov Models have been focused on producing a file interchange format
for models, and as such they have been focused on formats that have readily available means for parsing, such as
XML or S-Expressions. Whilst these techniques reduce the difficulty of building the tool, they do not make it easy
for the user, nor do they provide an elegant way of specifying the models.

By taking a different approach that focuses on the Hidden Markov Models as programs not data, we can bring to
bear a whole range of tools and techniques to aid in both the implementation and the design of a domain specific
language. Doing so changes the expectations we have for the language - the tool is no longer a code generator but
a fully-fledged compiler. We can approach the problem with a clean and clear syntax - removing any loopholes
such as the inclusion of arbitrary C code. This allows us to focus on generating the best possible GPU code,
without worrying about user changes - sacrificing some flexibility for usability. This is a particularly important
consideration when trying to tempt a broad spectrum of users to the tool.

Our performance results prove the effectiveness of dynamic programming algorithms of this ilk on massively parallel
architectures. Despite the intrinsic dependencies within the algorithm - it is not trivial to parallelise - we can
produce fast code, with plenty of scope for improvement.

5.8 Further Work

Whilst we believe we have excellent performance using the current system for large number of sequences on small
to medium size model, we wish to improve our performance on both larger and smaller models. In particular,
we would like to implement different models of division of labour for models with sizes at either extremity. For
small models, a sequence-per-thread distribution should increase performance by reducing the co-operation required
between threads, at the cost of increasing register usage per kernel. For larger models - say tens of thousands of
states - we might wish to implement a cross-block system, where each kernel call computes one column in the table
using multiple blocks.

A further modification to support large models with a linear structure is to allow some silent states within the
model. The current mechanism removes all silent states during compilation. In linear structures this may cause an
exponential growth in the number of transitions. By allowing some silent states, we can reduce this growth. The
caveat is that we must ensure the kernel computes all silent states before emitting states. This can be fixed by
ensuring that the silent states are at the start of the state array, and that their dependents are at the end of the
state array. We can then set block size appropriately, so that the blocks with silent states are computed prior to
the blocks with dependent states.

Under the block-per-sequence model, we often find divergence due to the varying number of transitions per state.
We also find memory bank conflicts and constant cache conflicts when more than one thread a) accesses the same
location in shared memory; or b) accesses different locations in the constant cache. Reduction of conflicts can come
from ordering the transitions appropriately to reduce such issues. In addition, we can modify our algorithm to
separate states from threads, so each thread can support multiple states. This allows a grouping of states in a
single thread to smooth out differences in the number of transitions between threads.
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Generalising the work described in Section 5.4, we hope to develop a small functional language that will allow the
differences between the three algorithms to be described in terms of the recursions they implement. Furthermore,
we hope to widen the scope of such a language to encompass other such dynamic programming algorithms with
similar characteristics.
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Chapter 6

Thesis Proposal

6.1 Thesis

Declarative DSLs enable expert scientists to make use of massively parallel architectures without being distracted
by the details of such architectures. To wit, we propose to focus on the support of massively parallel architectures
for optimisation problems through the development of domain specific languages and appropriate tools. We focus
on problems based around the Principle of Optimality; problems made of sub-problems, as found in dynamic
programming algorithms. These problems are rife in scientific computing, particularly in bioinformatics, and
flexible support for this sort of development is vital to best utilise the available hardware. Our strategy consists of
three steps:

• Develop a framework for parallelising recursive functions of an appropriate form.

• Map useful domains to the framework through the use of data-definition DSLs.

• Support natural extensions to domains through extensions to the recursive functions.

6.2 Strategy

We have already proven that massively parallel co-processors are eminently suitable for so-called desktop super-
computing for scientific purposes, providing a cost-efficient, scalable and powerful approach - our case studies in
Bioninformatics show this. In addition, we have developed a DSL for Hidden Markov Model compiler prototype
that allows efficient description of HMMs, illustrating the utility of DSLs in this area.

Our next step is to build a small functional language that is based around the concept of simple recursive functions
representing sub-problems. This will be used to support and implement future domain specific languages, first
focusing on Hidden Markov Models.

We will implement our system as a series of stand-alone, or external, languages. Whilst some may argue that
embedded languages would support our cause better, we feel that an external environment best supports the goals
and ambitions of our software. Creating high-quality massively parallel implementations requires a level and depth
of analysis that is best supported through an external language, where we can explicitly control the complexity to
ensure we can generate appropriate code. In particular, we can avoid the complex structures and idioms of a host
language that may be difficult to efficiently parallelise.

Familiarity is another important factor - the lingua franca of the Bioinformatics world are languages like Java or
C++ with very little ability for creating fluent internal DSLs. On the other hand, languages with support for
creating fluent embedded languages are unfamiliar to these domain experts. One may argue that a new external
language is also unfamiliar; however, we believe that a simple declarative language will be easier to pick up and
use, particularly if it is designed to match the natural descriptions of the model.

This framework will permit exploration of the core ideas of tabulation on massively parallel machines in a way
that distances the domain specific front-ends from the exact parallelisation scheme. We will explore the methods
of storing optimisation problems efficiently on massively parallel hardware, computing bounds for given recursive
equations, analysis tools for ensuring recursive functions adhere to the appropriate conditions and techniques for
partitioning the dependency graph of a given recursive function.
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At the most simplified level, we will work with recursive functions that have a similar character to the hidden
markov model algorithms we have already implemented. This will include some fixed methods of parallelisation e.g
along axes. We will then broaden the framework to include a wider array of dynamic programming like algorithms,
with more diverse parallelisation techniques. Our exploration strategy will involve identifying categories of recursive
equations that have a sensible mapping, implementing automatic recognition by developing analysis techniques on
functional equations and providing automatic mappings to the GPU.

Our strategy for adding domains to our framework will involve case-studies at each step; ensuring we are considering
a valid and useful subset of a problem, and that a sensible domain mapping for GPUs exists. Our success in this
endeavour will be in comparison to existing implementations of each problem; comparing the efficiency of the
solutions and the ease of implementation.

6.3 A timeline

2010

October-December

• Develop functional framework for describing recursive algorithms adhering to the Principle of Optimality.

• Analyse functional equations to determine that they adhere to the Principle of Optimality, e.g they contain
an appropriate base case and all recursive calls represent sub-problems.

• Automatically determine a suitable partition scheme on the dependency tree that describes those elements
that may be run in parallel: at this stage we will consider parallelism across a given axis or across the diagonal
only.

• Deliverable: A recursive functional framework capable of implementing Smith-Waterman and similar algo-
rithms, with performance equivalent to hand-coded implementations.

2011

January-March

• Integrate the functional framework into HMMingbird.

• Map Hidden Markov Model algorithms to functional framework.

• Extend HMMingbird to support more complex examples of Hidden Markov Models.

• Map common applications to HMMingbird to show value of approach.

• Deliverable: A version of HMMingbird that uses the recursive functional framework to implement the
standard HMM algorithms at similar efficiency to the existing HMMingbird and can be used to implement
examples such as a Profile HMM.

April-June

• Extend functional framework to analyse dependency graphs to identify other axes of parallelisation.

• Automatic implementation of axis on the device.

• Problems of ordering parameters optimally to best support parallelising on the device.

• Deliverable: An extension of the framework to support unusual recursions; support for multi-tape HMMs;
an improvement in performance for typical applications.

July-September

• Representing domain structures, such as Hidden Markov Models, as data structures on the device designed
to match read/write patterns of the massively parallel processor and minimise load/store time and space.

• Suitable data-structures for memoization and tabulation that best support the memory hierarchy of the
device.

• Deliverable: Improved performance, particularly for large Hidden Markov Models with lots of silent states.
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October-December

• Investigate other optimisation algorithms with long run-times by building initial device prototypes.

• RNA secondary structure prediction using Stochastic Context Free Grammars.

• Deliverable: Example GPU applications that implement a few choice problems related to SCFGs.

2012

January-March

• Extend framework to create DSL for Stochastic Context Free Grammars and other advanced recursive forms.

• Deliverable: Framework support for SCFGs; including a RNA implementation that has competitive perfor-
mance on the GPU.

April-June

• Confirmation of Status.

July Onwards

• Write dissertation.

2013

By March

• Submit dissertation.
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